1,587 research outputs found

    BaFe2Se2O as an Iron-Based Mott Insulator with Antiferromagnetic Order

    Full text link
    A new compound with a quasi-two-dimensional array of FeSe3O tetrahedra and an orthorombic structure, namely BaFe2Se2O, has been successfully fabricated. Experimental results show that this compound is an insulator and has an antiferromagnetic (AF) transition at 240 K. Band structure calculation reveals the narrowing of Fe 3d bands near the Fermi energy, which leads to the localization of magnetism and the Mott insulating behavior. The large distances between the Fe atoms perhaps are responsible for the characters. Linear response calculation further indicates a strong in-plane AF exchange JJ, this can account for the enhanced magnetic susceptibility (which has a maximum at about 450 K) above the Neel temperature.Comment: submitted to PRL on 2 May 2012, resubmitted to PRB on 31 May 2012, and accepted by PRB on 5 July 201

    Loophole-free Bell test for continuous variables via wave and particle correlations

    Get PDF
    We derive two classes of multi-mode Bell inequalities under local realistic assumptions, which are violated only by the entangled states negative under partial transposition in accordance with the Peres conjecture. Remarkably, the failure of local realism can be manifested by exploiting wave and particle correlations of readily accessible continuous-variable states, with very large violation of inequalities insensitive to detector-efficiency, which makes a strong case for a loophole-free test.Comment: 4 pages, published versio

    Reply to the comment on "Loophole-free Bell test for continuous variables via wave and particle correlations"

    Full text link
    In a recent note, Cavalcanti and Scarani (CS) constructed a counter local-hidden-variable model to explain the violation of our inequalities in Phys. Rev. Lett. 105, 170404 (2010). Here, we briefly discuss some issues in response to the comments raised by CS.Comment: published versio

    Distinct behaviors of suppression to superconductivity in LaRu3Si2LaRu_3Si_2 induced by Fe and Co dopants

    Full text link
    In the superconductor LaRu3_3Si2_2 with the Kagome lattice of Ru, we have successfully doped the Ru with Fe and Co atoms. Contrasting behaviors of suppression to superconductivity is discovered between the Fe and the Co dopants: Fe-impurities can suppress the superconductivity completely at a doping level of only 3%, while the superconductivity is suppressed slowly with the Co dopants. A systematic magnetization measurements indicate that the doped Fe impurities lead to spin-polarized electrons yielding magnetic moments with the magnitude of 1.6 μB\mu_B\ per Fe, while the electrons given by the Co dopants have the same density of states for spin-up and spin-down leading to much weaker magnetic moments. It is the strong local magnetic moments given by the Fe-dopants that suppress the superconductivity. The band structure calculation further supports this conclusion.Comment: 6 pages, 7 figure

    Crystal structure of ethyl 5-formyl-3,4-dimethylpyrrole-2-carboxylate–1-(propan-2-ylidene)thiosemicarbazide (1/1), C14H22N4O3S

    Get PDF
    Abstract C13H17N3OS, triclinic, P1̄ (no. 2), a = 6.9906(9) Å, b = 8.0075(11) Å, c = 16.057(2) Å, α = 81.822(2)°, β = 89.151(2)°, γ = 70.735(2)°, V = 839.4(2) Å3, Z = 2, R gt(F) = 0.0444, wR ref(F 2) = 0.1299, T = 296(2) K
    • …
    corecore